Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pathol ; 262(3): 271-288, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38230434

RESUMEN

Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Biomarcadores de Tumor/genética , Pronóstico , Fenotipo , Reino Unido , Microambiente Tumoral
2.
J Pathol ; 261(4): 378-384, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37794720

RESUMEN

Quantifying tumor-infiltrating lymphocytes (TILs) in breast cancer tumors is a challenging task for pathologists. With the advent of whole slide imaging that digitizes glass slides, it is possible to apply computational models to quantify TILs for pathologists. Development of computational models requires significant time, expertise, consensus, and investment. To reduce this burden, we are preparing a dataset for developers to validate their models and a proposal to the Medical Device Development Tool (MDDT) program in the Center for Devices and Radiological Health of the U.S. Food and Drug Administration (FDA). If the FDA qualifies the dataset for its submitted context of use, model developers can use it in a regulatory submission within the qualified context of use without additional documentation. Our dataset aims at reducing the regulatory burden placed on developers of models that estimate the density of TILs and will allow head-to-head comparison of multiple computational models on the same data. In this paper, we discuss the MDDT preparation and submission process, including the feedback we received from our initial interactions with the FDA and propose how a qualified MDDT validation dataset could be a mechanism for open, fair, and consistent measures of computational model performance. Our experiences will help the community understand what the FDA considers relevant and appropriate (from the perspective of the submitter), at the early stages of the MDDT submission process, for validating stromal TIL density estimation models and other potential computational models. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Patólogos , Estados Unidos , Humanos , United States Food and Drug Administration , Linfocitos Infiltrantes de Tumor/patología , Reino Unido
3.
J Pathol ; 260(5): 514-532, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37608771

RESUMEN

Modern histologic imaging platforms coupled with machine learning methods have provided new opportunities to map the spatial distribution of immune cells in the tumor microenvironment. However, there exists no standardized method for describing or analyzing spatial immune cell data, and most reported spatial analyses are rudimentary. In this review, we provide an overview of two approaches for reporting and analyzing spatial data (raster versus vector-based). We then provide a compendium of spatial immune cell metrics that have been reported in the literature, summarizing prognostic associations in the context of a variety of cancers. We conclude by discussing two well-described clinical biomarkers, the breast cancer stromal tumor infiltrating lymphocytes score and the colon cancer Immunoscore, and describe investigative opportunities to improve clinical utility of these spatial biomarkers. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias del Colon , Humanos , Biomarcadores , Benchmarking , Linfocitos Infiltrantes de Tumor , Análisis Espacial , Microambiente Tumoral
4.
J Pathol ; 260(5): 498-513, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37608772

RESUMEN

The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Mamarias Animales , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Linfocitos Infiltrantes de Tumor , Biomarcadores , Aprendizaje Automático
5.
BMJ Open ; 12(5): e055735, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35623750

RESUMEN

OBJECTIVE: The aggressive triple-negative breast cancer (TNBC) subtype disproportionately affects women of African ancestry across the diaspora, but its frequency across Africa has not been widely studied. This study seeks to estimate the frequency of TNBC among African populations. DESIGN: Systematic review and meta-analysis using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework. DATA SOURCES: PubMed, EMBASE, African Journals Online and Web of Science were searched on 25 April 2021. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: We included studies that use breast cancer tissue samples from indigenous African women with sample size of eligible participants ≥40 and full receptor status for all three receptors (oestrogen receptor (ER)/progesterone receptor (PR)/human epidermal growth factor receptor 2 (HER2)) reported. DATA EXTRACTION AND SYNTHESIS: Two independent reviewers extracted data and assessed risk of bias using the modified assessment tool by Hoy et al. (2012) for prevalence studies. A random-effects meta-analysis was performed, and data were pooled using the inverse-variance method and logit transformation. Pooled frequencies were reported with 95% CIs calculated with the Clopper-Pearson method and heterogeneity quantified with I2 statistic. GRADE assessed the certainty of the evidence. RESULTS: 1808 potentially eligible studies were identified of which 67 were included in the systematic review and 60 were included in the meta- analysis. Pooled TNBC frequency across African countries represented was estimated to be 27.0%; 95% CI: 24.0% to 30.2%, I2=94%. Pooled TNBC frequency was highest across West Africa, 45.7% (n=15, 95% CI: 38.8% to 52.8%, I2=91%) and lowest in Central Africa, 14.9% (n=1, 95% CI: 8.9 % to 24.1%). Estimates for TNBC were higher for studies that used Allred guidelines for ER/PR status compared with American Society of Clinical Oncology(ASCO)/College of American Pathologists(CAP) guidelines, and for studies that used older versions of ASCO/CAP guidelines for assessing HER2 status. Certainty of evidence was assessed to be very low using GRADE approach. CONCLUSION: TNBC frequency was variable with the highest frequency reported in West Africa. Greater emphasis should be placed on establishing protocols for assessing receptor status due to the variability among studies.


Asunto(s)
Neoplasias de la Mama Triple Negativas , África/epidemiología , Femenino , Humanos , Grupos de Población , Prevalencia , Receptores de Estrógenos/metabolismo , Neoplasias de la Mama Triple Negativas/epidemiología , Neoplasias de la Mama Triple Negativas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...